Cohomology of Lie
نویسنده
چکیده
We explicitly compute the first and second cohomology groups of the classical Lie superalgebras slm|n and osp2|2n with coefficients in the finite dimensional irreducible modules and the Kac modules. We also show that the second cohomology groups of these Lie superalgebras with coefficients in the respective universal enveloping algebras (under the adjoint action) vanish. The latter result in particular implies that the universal enveloping algebras U(slm|n) and U(osp2|2n) do not admit any non-trivial formal deformations of Gerstenhaber type.
منابع مشابه
Cohomology of aff(1|1) acting on the space of bilinear differential operators on the superspace IR1|1
We consider the aff(1)-module structure on the spaces of bilinear differential operators acting on the spaces of weighted densities. We compute the first differential cohomology of the Lie superalgebra aff(1) with coefficients in space Dλ,ν;µ of bilinear differential operators acting on weighted densities. We study also the super analogue of this problem getting the same results.
متن کاملDirac Operators and Lie Algebra Cohomology
Dirac cohomology is a new tool to study unitary and admissible representations of semisimple Lie groups. It was introduced by Vogan and further studied by Kostant and ourselves [V2], [HP1], [K4]. The aim of this paper is to study the Dirac cohomology for the Kostant cubic Dirac operator and its relation to Lie algebra cohomology. We show that the Dirac cohomology coincides with the correspondin...
متن کاملLie bialgebras real Cohomology
Let g be a finite dimensional real Lie bialgebra. We introduce an R -valued cohomology of g for which the space of all inequivalent Lie bialgebra central extensions of g by R is isomorphic to that second cohomology group of g . Furthermore, we study the natural projection of this group on the R -valued Lie algebra second cohomology group of g .
متن کاملTriple Cohomology of Lie–Rinehart Algebras and the Canonical Class of Associative Algebras
We introduce a bicomplex which computes the triple cohomology of Lie– Rinehart algebras. We prove that the triple cohomology is isomorphic to the Rinehart cohomology [13] provided the Lie–Rinehart algebra is projective over the corresponding commutative algebra. As an application we construct a canonical class in the third dimensional cohomology corresponding to an associative algebra.
متن کاملCohomology of Restricted Lie Algebras
In this dissertation, we investigate the cohomology theory of restricted Lie algebras. Motivations for the definition of a restricted Lie algebra are given and the theory of ordinary Lie algebra cohomology is briefly reviewed, including a discussion on algebraic interpretations of the low dimensional cohomology spaces of ordinary Lie algebras. The general Cartan-Eilenberg construction of the st...
متن کاملCohomology of Conformal Algebras
Introduction 2 1. Preliminaries on conformal algebras and modules 4 2. Basic definitions 9 3. Extensions and deformations 13 4. Homology 17 5. Exterior multiplication, contraction, and module structure 18 6. Cohomology of conformal algebras and their annihilation Lie algebras 19 6.1. Cohomology of the basic complex 19 6.2. Cohomology of the reduced complex 21 6.3. Cohomology of conformal algebr...
متن کامل